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Selection of urban bypass highway alternatives involves the consideration of competing and conflicting criteria and factors, which
require multicriteria decision analysis. Analytic hierarchy process (AHP) is one of the most commonly used multicriteria decision
making (MCDM) methods that can integrate personal preferences in performing spatial analyses on the physical and nonphysical
parameters. In this paper, the traditional AHP is modified to fuzzy AHP for the determination of the optimal bypass route for
Eldoret town inKenya.The fuzzyAHP is proposed in order to take care of the vagueness type uncertainty encountered in alternative
bypass location determination. In the implementation, both engineering and environmental factors comprising of physical and
socioeconomic objectives were considered at different levels of decision hierarchy. The results showed that the physical objectives
(elevation, slope, soils, geology, and drainage networks) and socioeconomic objectives (land-use and road networks) contributed
the same weight of 0.5 towards the bypass location prioritization process. At the subcriteria evaluation level, land-use and existing
road networks contributed the highest significance of 47.3% amongst the seven decision factors. Integrated with GIS-based least
cost path (LCP) analysis, the fuzzy AHP results produced the most desirable and optimal route alignment, as compared to the AHP
only prioritization approach.

1. Introduction

As dependence on urban rail and road networks increases,
availability and reliability have become critical transportation
issues, with operators being forced to modernize and/or
increase the distribution of their networks. This requires a
lot of time and money to be invested in configuring and
planning transport networks, with dimensioning and cost
optimization playing key roles.

Problems in the field of transportation planning and
traffic control are generally ill-conditioned, that is, geospa-
tially ambiguous and ontologically and epistemically vague in
terms of their geographic entity, spatial, and nonspatial repre-
sentations. This implies that most of these and the associated
parameters are characterized by subjectivity, uncertainty,
ambiguity, and imprecision. These scenarios characterize
complex system of urban road transport network planning

which must be optimized under different engineering, phys-
ical, socioeconomical, and environmental considerations.

The general concept of complex system and subsystem
modeling was initially addressed by Kolmogorov’s theorem
[1]. Complex problems and systems are either sub- or super-
additive and therefore they are difficult tomodel and describe
at a single level of analysis. To solve a complex problem, the
system needs to be divided into subcomponents at various
hierarchical levels (based on their individual complexities)
in order to understand the system clearly and describe the
relationships with lesser ambiguity.

In solving complex transportation engineering problems,
deterministic and/or stochastic models have been adopted.
These mathematical models use different formula to objec-
tively solve such problems. However, when solving real-
life problems, geospatially ontological vague information
is often encountered and is frequently hard to quantify
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using these classical mathematical techniques. Vague spatial
information represents subjective and noncrisp knowledge.
Because it is not possible to quantify some subjective qual-
itative information, different assumptions are made in the
stochastic/deterministic models. Maupin and Jousselme [2]
classified vagueness into three main categories: ontological,
linguistic, and epistemic vagueness. Ontological vagueness
deals with physical nature of objects. Linguistic vagueness
arises due to the limitation of the natural languages while
epistemic vagueness is due to the limitation of sensorial
apparatus, lack of knowledge, or computational limitations.

The goal of transportation route project selection process
is to analyze, evaluate, and approve or reject alternative
project proposals based on established criteria, following a
set of structured steps and datasets. In a world of limited
resources however, choices have to be judiciously made. This
implies that for transportation engineering projects, every
project begins with a proposal, but not every proposal can or
should become a project.

Often, multicriteria decision making (MCDM) is used
in analyzing the complex datasets in selecting alternative
sources. MCDM has proved to be a promising and growing
field of study since the early 1970s and many applications
in the fields of civil and environmental engineering have
been reported [3]. Carlsson and Fullér [4] classified MCDM
methods into four distinct types including (i) outranking, (ii)
utility theory, (iii) multiple objective programming, and (iv)
group decision and negotiation theory. Hwang and Yoon [5]
critically reviewed these methods in the crisp environment
and their applications for a single decision maker. Nonethe-
less, MCDM techniques however deal with the problems
whose alternatives are predefined and the decision maker
ranks available alternatives.

One of the methods classified under MCDM utility
theory is the analytic hierarchy process (AHP) that was
developed by Saaty [6, 7]. The AHP provides an ideal
platform for complex decision making problems, by using
objective mathematics to process the subjective and personal
preferences of an individual or a group in decision making
[8].The approach works on the premise that decisionmaking
of complex problems can be handled by structuring it into a
simple and comprehensible hierarchical structure. Once the
hierarchical structure is developed, a pairwise comparison is
carried out between any two criteria. The levels of the pair-
wise comparisons range from 1 to 9, where “1” represents that
two criteria are equally important, while the other extreme
“9” represents that one criterion is absolutelymore important
than the other. Solution of the AHP hierarchical structure is
obtained by synthesizing local and global preference weight
to obtain the overall priority [7].

AHP has proved to be one of the most widely applied
MCDMmethods as reviewed byVaidya andKumar [9].There
is a growing list of publications on the application of AHP
method in civil and environmental engineering (e.g., [3, 10–
16]). In these studies, AHP technique is reported to involve
subjectivity in pairwise comparisons and therefore vagueness
type uncertainty dominates in this process [17]. Indeed, each
definition of the vagueness, where subjective opinion is used

in the geographically-based AHP knowledge solicitation, is
exhibited in different stages of the decision making process.

Buckley [17] raised questions about certainty of the
comparison ratios used in the AHP. He had considered a
situation in which the decision maker can express feelings of
uncertainty while he/she is ranking or comparing different
alternatives or criteria.Themethod used to take uncertainties
into account is by using fuzzy numbers instead of crisp
numbers in order to compare the importance between the
alternatives and criteria. Saaty and Saaty and Tran [18, 19]
however believe that some uncertainty lies in the nature of
AHP method.

In urban bypass location and horizontal alignment
determination, the typical multiobjective decision making
problem involves selecting one alternative from a range of
possible alternatives, given a set of criteria or attributes
that are important for the road selection and design. For
a new highway bypass, a minimum cost route needs to be
selected while at the same time satisfying a number of design
constraints such as curvature, gradient, and sight distance
requirements [20]. Since a number of costs considered
in highway bypass location optimization are geospatially
sensitive, a geographic information system (GIS) analysis
can be used as data input and analyses system in solv-
ing such problems. The geography-sensitive costs however
mainly concern right-of-way, earthworks, and environmental
parameters [21].While conventionalGIS analyses can be used
to solve such geographically sensitive problems, GIS deals
only with determinate spatial entities and their relationships;
hence it is unsuitable for handling uncertainty. From the
forgoing, it means that AHP alone may not suffice in solving
the so called complex problems, such as locating a highway
bypass and, therefore, the concept of fuzzy by Buckley [17]
ought to be considered.

Zadeh [22] introduced the concept of fuzzy sets more
than 40 years ago. In his research on human thinking and
judgment of the modeling process, Zadeh [22] built up a
theoretical system using rigorous mathematical methods to
describe fuzzy phenomena. Fuzzy set theory is an extension
of the traditional classic set theory. The aim of the extension
is to overcome the accurate “either-or” bivalue logic of classic
set theory. This means that there is a smooth transition
between elements and nonelements of a set, so that one
element can partially belong to a set but not completely
belong or completely not belong to the set. The difference
between a fuzzy set and a classic set is that the fuzzy set has
explicitly put forward the terms of a membership function
through which the degree of each element belonging to a set
can be calculated.

The use of fuzzy set methodologies in transportation
related planning and evaluation can allow for the imprecise
representations of the real phenomena that are often vague,
incomplete, and uncertain information. In the context of
this case study, fuzzy-based bypass criteria evaluations define
continuous suitability classes rather than “true” or “false”
as in the classical Boolean model (e.g., [23–25]). This is
because fuzzy set methodologies are able to accommodate
attribute values and properties which are close to category
boundaries. Furthermore, the fuzzy methods are able to
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address and explore the uncertainties associatedwith physical
(geographical ontology) resources [26–32].

Since the decision criteria in bypass route evaluations are
quantitative and qualitative, prioritization of suitable bypass
location is considered as a complex MCDM problem, since
ordinary MCDMmodels are inefficient in adjusting with the
real conditions caused by conversion of qualitative variables
into quantitative ones. This study proposed to exploit the
advantages of AHP and fuzzy set theory (fuzzy AHP),
as a suitable multiattribute approach for decision making,
under vagueness and uncertainty. In the next subsection, the
concept of vagueness type uncertainty is discussed in relation
to fuzzy arithmetic operations and representations.

1.1. Decision Uncertainty and Fuzzy Arithmetic: Theoretical
Considerations. The typology and definition of uncertainty
within artificial intelligence and engineering community are
vast, and often, conflicting taxonomies are provided (e.g.,
[36, 37]). Klir and Yuan [36], for example, identify uncer-
tainties as fuzziness (lack of definite or sharp distinction,
vagueness), nonspecificity (two or more alternatives are left
unspecified), and discord (disagreement in choosing among
several alternatives, conflict).

The reasoning in fuzzy logic is that human beings think
and reason using linguistic terms such as “hot” and “fast,”
rather than in precise numerical terms “90 degrees” and
“200 km/hours,” respectively.The fuzzy set theorymodels the
interpretation of imprecise and incomplete sensory informa-
tion as perceived by the human brain. Thus, it represents and
numerically manipulates such information in a natural way
via membership functions and fuzzy rules. Some advantages
of fuzzy logic are conceptually easy to understand, flexible,
and tolerant of imprecise data [22]. It can model nonlinear
functions of complexity and also can be built on top of the
experience of experts. A key feature of fuzzy logic is to handle
uncertainties and nonlinearity, existing in physical systems,
similarly to the reasoning conducted by human beings, which
makes it very attractive for decision making systems [22].

Fuzzy-based techniques are a generalized form of interval
analysis used to address uncertain and/or vague informa-
tion. Statistically, a fuzzy number describes the relationship
between an uncertain quantity (𝑥) and a membership func-
tion (𝜇

𝑥
), which ranges between 0 and 1. A fuzzy set is an

extension of the classical set theory (in which (𝑥) is either a
member of set (𝐴) or not) in that an (𝑥) can be a member
of set 𝐴 with a certain membership function (𝜇

𝑥
). Fuzzy

sets qualify as fuzzy numbers if they are normal, convex,
and bounded [36]. Different shapes of fuzzy numbers are
possible (e.g., bell, triangular, trapezoidal, Gaussian, etc.). In
order to simplify the implementation, in this paper, triangular
fuzzy numbers (TFNs) were preferred as discussed in A.
Aslani and F. Aslani [38]. TFN can be represented by three
points (𝑎, 𝑏, 𝑐) on the universe of discourse (scale𝑋 on which
criterion is defined), representing the minimum, most likely,
and maximum values, respectively. Some commonly used
fuzzy arithmetic operations are presented in Table 1.

One important feature of fuzzy numbers (sets) is the
concept of 𝛼-cut. The 𝛼-cut of a fuzzy set 𝐴 is a crisp set 𝐴𝛼

Table 1: Common fuzzy arithmetical operations using two TFNs.

Operators a,bFormulae Results
Summation 𝐴 + 𝐵 (𝑎

1
+ 𝑏
1
, 𝑎
2
+ 𝑏
2
, 𝑎
3
+ 𝑏
3
)

Subtraction 𝐴 − 𝐵 (𝑎
1
− 𝑏
3
, 𝑎
2
− 𝑏
2
, 𝑎
3
− 𝑏
1
)

Multiplication 𝐴 × 𝐵 (𝑎
1
× 𝑏
1
, 𝑎
2
× 𝑏
2
, 𝑎
3
× 𝑏
3
)

Division 𝐴/𝐵 (𝑎
1
/𝑏
3
, 𝑎
2
/𝑏
2
, 𝑎
3
/𝑏
1
)

Scalar product 𝑄 ⋅ 𝐵 (𝑄 × 𝑏
1
, 𝑄 × 𝑏

2
, 𝑄 × 𝑏

3
)

a
𝐴 = (𝑎

1
, 𝑎
2
, 𝑎
3
); 𝐵 = (𝑏

1
, 𝑏
2
, 𝑏
3
).

bThe values of 𝐴 and 𝐵 are positive; if negative numbers are used, the
corresponding min and max values have to be selected.
𝑎
1
< 𝑎
2
< 𝑎
3
; 𝑏
1
< 𝑏
2
< 𝑏
3
; 𝑎
𝑖
and 𝑏
𝑖
(𝑖 = 1 to 3) > 0; 𝑛 > 0;𝑄 > 0.

that contains all the elements of the universal set 𝑋 whose
membership grades in 𝐴 are greater than or equal to the
specified value of an 𝛼; that is, 𝐴𝛼 = {𝑥 | 𝜇

𝑥
≥ 𝛼} [36].

Operations on the fuzzy number can be performed on
the real number or the membership function (𝜇

𝑥
). Fuzzy

operations are carried out on the fuzzy numbers using fuzzy
arithmetic. Fuzzy arithmetic is based on two properties of
fuzzy numbers [36]: (i) each fuzzy number can fully and
uniquely be represented by its 𝛼-cut and (ii) 𝛼-cuts of each
fuzzy number are closed intervals of real numbers for all
𝛼 ∈ (0, 1]. Hence, once the interval numbers are obtained, a
well-established operation of interval analysis can be utilized.
Through fuzzy reasoning, it is possible to combine subjective
and objective knowledge. Further details on fuzzy arithmetic
for implementation in this study are presented in Section 2.2.

The rest of this paper is organized as follows. Section 2
highlights the methodological principles of AHP and fuzzy
sets theory and the integration into fuzzy AHP (F-AHP).
Section 3 is on case study area and data sources description,
which is followed by the results and discussions and the final
section is on the study conclusions.

2. Methodological Review and Formulation

2.1. AHP: AMultiple Criteria Decision Making Tool. By orga-
nizing and assessing alternatives in regards tomultilevel hier-
archy of multifaceted attributes, AHP provides an effective
quantitative decision making tool to deal with complex and
unstructured problems. It allows a better, easier, and more
efficient framework for identification of selection criteria,
calculating their weights and analysis. The process makes it
possible to incorporate judgments on intangible qualitative
criteria alongside tangible quantitative criteria [18].

AHP is thus a decision making approach based on the
genuine ability of people to make critical decisions that allow
the active participation of decision makers in exploring all
possible options in order to fully understand the underlying
problems before reaching an agreement or arriving at a
decision. Its fundamental purpose is to judge the given
alternatives for a particular goal by developing priorities
for these alternatives and for the selected criteria [8]. A
pairwise comparison technique is used to derive the priorities
for the criteria in terms of their importance in achieving
the goal. Similarly, the priorities for the alternatives (i.e.,
the competing choices under consideration) are derived in
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Table 2: Nine-point Saaty intensity important scale (Saaty [18]).

Intensity of
importance Definition Description

1 Equally important Two factors contribute equally to the objective
3 Moderately more important Experience and judgment slightly favor one over the other
5 Strongly more important Experience and judgment strongly favor one over the other

7 Very strongly more important Experience and judgment very strongly favor one over the other.
Its importance is demonstrated in practice

9 Extremely more important The evidence favoring one over the other is of the highest
possible validity

2, 4, 6, 8 Intermediate values When compromise is needed

Reciprocals of
above nonzero

If an element 𝑖 has one of the above numbers
assigned to it when compared with element 𝑗, then
𝑗 has the reciprocal value when compared with 𝑖

Ratios Ratios arising from the scale If consistency was to be forced by obtaining 𝑛 numerical values
to span the matrix

pairwise comparisons in terms of their performance against
each criterion. Generally, AHP is based on three principles:
decomposition, comparative judgment, and synthesis of pri-
orities on a standardized scale of nine levels (Table 2) [18].

The Saaty scale consists of nine points, chosen because
psychologists conclude that, nine objects are the most that an
individual can simultaneously compare and consistently rank
[18]. According to Saaty’s scale, pairwise judgments are made
based on the best information available and the decision
maker’s knowledge and experience.

The process of AHP can be summarized in four steps:
construct the decision hierarchy, determine the relative
importance of attributes and subattributes, evaluate each
alternative and calculate its overall weight in regard to
each attribute, and check the consistency of the subjective
evaluations [7]. In the first step, the decision is decomposed
into its independent elements and represented in a hierarchy
diagram, which should have at least three levels (goal,
attributes, and alternatives). Second, the user is asked to
subjectively evaluate pairs of attributes on a nine-point scale.
In the third stage, aweight is calculated for each attribute (and
subattribute) based on the pairwise comparisons. Because
judgments are given subjectively by the user, the logical
consistency of these evaluations is tested in the last stage.
The ultimate outcome of the AHP is a relative score for each
decision alternative [39]. The mathematical criterion is as
described below.

Let 𝐶 = {𝐶
𝑗
| 𝑗 = 1, 2, . . . , 𝑛} be the set of criteria.

The result of the pairwise comparison on 𝑛 criteria can be
summarized in an (𝑛 𝑛) evaluation matrix 𝐴 in which every
element 𝑎

𝑖𝑗
(𝑖, 𝑗 = 1, 2, . . . , 𝑛) is the quotient of weights of the

criteria, as shown in (1). Consider the following:

𝐴 =
[
[
[

[

𝑎
11
𝑎
12
⋅ 𝑎
1𝑛

𝑎
21
𝑎
22
⋅ 𝑎
2𝑛

⋅ ⋅ ⋅ ⋅

𝑎
𝑛1
𝑎
𝑛2
⋅ 𝑎
𝑛𝑛

]
]
]

]

,

𝑎
𝑖𝑖
= 1, 𝑎

𝑗𝑖
=
1

𝑎
𝑖𝑗

, 𝑎
𝑖𝑗
̸= 0.

(1)

At the last step of AHP, themathematical process commences
to normalize and find the relative weights for each matrix.
The relative weights are given by the right eigenvector (𝑤)
corresponding to the largest eigenvalue (𝜆max) as in (2).
Consider the following:

𝐴
𝑤
= 𝜆max𝑤. (2)

If the pairwise comparisons are completely consistent, the
matrix 𝐴 has rank 1 and 𝜆max = 𝑛. In this case, weights can
be obtained by normalizing any of the rows or columns of 𝐴
[40]. The quality of the output of the AHP is strictly related
to the consistency of the pairwise comparison judgments.The
consistency is defined by the relation between the entries of
𝐴 : 𝑎
𝑖𝑗
× 𝑎
𝑗𝑘
= 𝑎
𝑖𝑘
. The consistency index CI is given by

CI =
𝜆max − 𝑛

𝑛 − 1
. (3)

The final consistency ratio (CR), which lets the user conclude
whether the evaluations are sufficiently consistent, is calcu-
lated as the ratio of the CI and the random index (RI):

CR = CI
RI
. (4)

Saaty [6, 7] showed that in a consistent judgment matrix,
𝜆max = 𝑛, where 𝑛 is the dimension of the judgment matrix
and the values of RI are tabulated in Table 3. According to
Saaty [7], the threshold of the CR is 10%, and, in case of
exceedance, a three-step procedure is followed as (i) identify
the most inconsistent judgment in the decision matrix, (ii)
determine the range of values to which that judgment can
be changed so as to reduce the associated inconsistency, and
(iii) ask the decision maker to reconsider the judgment to a
“reasonable value.” In the current study, though the pairwise
comparison indices (relative importance) of the judgment
matrix are TFNs, however, the CI is evaluated for the most
likely value.

Characteristically, AHP approach has been widely used
due to its simple comparative approach of taking only two
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Table 3: Random index used to compute consistency ratio (CR) (Saaty [18]).

𝑁 1 2 3 4 5 6 7 8 9 10
Random index (RI) 0 0 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49

parameters at a time and its ability to provide inconsistency.
But this has only nine-scale crisp inputs and it highly depends
upon the user judgment. Since decisionmaker cannot specify
the relative performance accurately the results have the possi-
bility of uncertainty.There is noway one can explicitly include
decisionmaker’s confidence and attitude in the original AHP.
AHP has been criticized due to its use of unbalanced scale of
judgments and inability to resolve the inherent ambiguity and
uncertainty in the pairwise comparison process [17].

2.2. Fuzzy Sets and Fuzzy Logic. As already stated above,
fuzzy sets provide a mechanism to express the degree of
membership rather than accepting or denying the mem-
bership, which is typical human belief in decision making
process. Because human decision making inevitably entails
some degree of comparisons and uncertainty, a combination
of AHP and fuzzy technique is presented in this study. From
Section 1.1, a fuzzy set 𝐴 in a universe of discourse 𝑋 is
characterized by a membership function 𝜇

𝑎
which associates

with each element 𝑥 in𝑋 a real number in the interval [0, 1].
The function value 𝜇

𝑎
is termed the grade of membership of

𝑥 in 𝐴.
A fuzzy membership function (MF) is a curve that maps

each element in the input space into a membership value
called the degree of membership. The only restriction on
the MF is that it must vary between 0 and 1. The function
itself may take any shape that is defined and specified by the
designer to suit the nature of the problem from the point of
view of simplicity, convenience, speed, and efficiency. One
of the most common classes of MFs is the triangular MF
[38] shown in Figure 1. A triangular fuzzy number 𝑎 can be
defined by a triplet (𝑎

1
, 𝑎
2
, 𝑎
3
):

𝜇
𝑎
(𝑥) =

{{{{{{

{{{{{{

{

0 𝑥, < 𝑎
1

𝑥 − 𝑎
1

𝑎
2
− 𝑎
1

𝑎
1
< 𝑥 < 𝑎

2

𝑥 − 𝑎
3

𝑎
2
− 𝑎
3

𝑎
2
< 𝑥 < 𝑎

3

0 𝑥 < 𝑎
3

}}}}}}

}}}}}}

}

, (5)

where (𝑎
1
< 𝑎
2
< 𝑎
3
) are the 𝑋 coordinates of the three

corners of the underlying MF.
The 𝛼-cut of a fuzzy set is the crisp set of all elements that

have a membership value greater than or equal to 𝛼. For a
fuzzy set 𝐴, its 𝛼-cut is described as 𝐴

𝛼
= {𝑥 ∈ 𝑋/𝜇

𝐴
(𝑥) ≥

𝛼, 𝛾
𝐴
(𝑥) ≥ 0} (Figure 1). Subset 𝐴 after 𝛼-cut can be denoted

as𝐴
𝛼
= [𝑥𝛼
𝑙
, 𝑥𝛼
𝑟
].When 𝛼 is close to 1, every element in subset

𝐴
𝛼
has a strong degree of membership. In this study, 𝛼-cut is

adopted to represent the decisionmaker’s level of confidence.
The more confident the decision maker is, the larger 𝛼 value
is.

Fuzzy IF-THEN rules form the rule base in a fuzzy
inference system and they provide a means of encoding

x𝛼l x𝛼r
a1 a2 a3

x

1

0

𝛼-cut𝛼

𝜇ã(x)

Figure 1: A triangular fuzzy number 𝑎 with the 𝛼-cut on the
membership function.

conditional propositions. All parts of the antecedent are eval-
uated simultaneously and resolved to a single number using
the logical operators in Table 1, that is, AND, OR, and NOT.
Fuzzy reasoning, known also as approximate reasoning, is
the process of deriving conclusions from a set of IF-THEN
fuzzy rules using an inference procedure. By fuzzy reasoning,
the truth of the consequent is inferred from the degree of
truth of the antecedent. The concept of fuzzy set theory,
IF-THEN rules, and fuzzy reasoning together constitute a
computing framework usually called fuzzy inference system
(FIS). The structure of a fuzzy inference system consists
of three major parts: a rule base that holds the fuzzy IF-
THEN rules used in the inference process, a database that
contains the membership functions that characterize the
fuzzy sets, and a reasoning mechanism that performs the
inference procedure and derives conclusions depending on
a set of rules and facts. The fuzzy inference process thus
consists of five steps including fuzzification, application of
the fuzzy operators, fuzzy implication, fuzzy aggregation, and
defuzzification, as schematically summarized in Figure 2.The
function of the fuzzification is to determine the degree of
membership to a crisp input in a fuzzy set. The fuzzy rule
base is used to present the fuzzy relationship between input-
output fuzzy variables. The output of the fuzzy rule base is
determined based on the degree of membership specified by
the fuzzifier.The defuzzification is used to convert outputs to
the fuzzy rule base into crisp values.

In recent years, fuzzy logic has been successfully applied
in a variety of disciplines including engineering, computer
vision, weather prediction, image processing, nuclear reactor
control, control of biomedical processes, automatic tuning,
and many other fields of research [39]. Little has however
been done on the practical application of fuzzy logic and
AHP, especially in intelligent transportation based decision
making.
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Fuzzification

If-then
rule base

Knowledge base 
(rule and function)

DefuzzificationInput

Membership 
function

Output

Figure 2: A block diagram of generalized fuzzy system.

Decision making team 
(transport engineers and planners)

Determining and standardizing 
the evaluation factors

Structuring decision hierarchy

Approve 
decision 
hierarchy

No

Yes

Assigning criteria weights via 
AHP

Approve 
criteria 
weights

No

Create fuzzy pairwise 
comparison matrix of experts 

Decision making and validation
(least cost highway bypass location 

and horizontal alignment)

Adjust factor  
weights

Adjust 
structure

Check for consistency (CI) 
for the most likely value

Calculate the fuzzy weights

Fuzzy 
defuzzification

Least cost path  
(LCP) finding

Aggregate standardized 
individual criteria

Yes

No

Adjust decision 
weights

Yes

Constraint 
factor and 
GIS-LCP

(J̃)

CI < 10%?

(WFkn = Wi × MF i)

Figure 3: Schematic framework of the proposed methodology for least cost bypass horizontal alignment selection based on fuzzy AHP with
GIS-LCP analysis.

In fuzzy AHP (F-AHP), instead of single crisp value, a
range of values are used.Out of this range, decisionmaker can
pick up values as per his/her confidence and also can specify
the associated attitude toward risk as optimistic, pessimistic,
or moderate. To take care of the risk attitude, optimistic
attitude takes the highest value of the range, pessimistic
attitude takes the lowest value in the range, and moderate
attitude takes the middle value of the uncertain range.

In related linear engineering structures (LES) studies,
Nataraj [41] used AHP in pipeline route location, Moghad-
dam and Delavar [35] used GIS-based fuzzy logic in oil and
gas pipeline location optimization in Iran, and Dell’Acqua
[20] used fuzzy inference systems to optimize highway
alignments in Italy. Notably, not much LES intelligent based
studies have been reported on actual highway bypass location
projects especially in developing countries.
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2.3. Fuzzy Analytic Hierarchy Process (F-AHP). This study
argues that for the analysis of physical phenomena in decision
making, the subjective pairwise comparison is prone to
vagueness type uncertainty as already stated and can only be
best analyzed using fuzzy-based analyses.The first attempt in
the integration of fuzzy-based technique with AHP appeared
in [42] who compared fuzzy ratios described by TFNs and
weight computed using logarithmic least squares method.
Buckley [17] highlighted the shortcomings in their method
and proposed a geometric mean to derive fuzzy weights
and performance scores. Boender et al. [43] modified van
Laarhoven and Pedrycz [42] normalizationmethod by imple-
menting a regression equation. Later Chang [34] introduced
the use of the extent analysis method for the synthetic extent
values of the pairwise comparisons. While Cheng [44] intro-
duced the entropy concepts to calculate aggregate weights,
Zhu et al. [45] improved on the extent analysis. Deng [46]
presented a fuzzy-based approach for handling multicriteria
analysis problems by incorporating the decision maker’s
attitude toward risk. Lee et al. [47] introduced the concept

of comparison interval and proposed a methodology based
on stochastic optimization to achieve global consistency,
while Leung and Cao [48] discussed the consistency issue
and proposed a concept of fuzzy consistency and tolerance
deviation. Further, Yu [49] proposed goal programming to
compute the fuzzy priority vectors and Arslan and Khisty
[50] proposed a set of IF-THEN rules to select the cognitive
comparisons made between each alternative. Wang et al. [51]
presented a two-stage logarithmic goal programmingmethod
for generating weights from interval comparison matrices.
On the application side, [52, 53] presented evaluation of
services using F-AHP. These reviews demonstrate that fuzzy
AHP approach has been considered to a large extent in theory
and to a smaller extent in practical applications.

This study builds on the interpretation of F-AHPby incor-
porating the decision maker’s attitude in the final decision
making process aswas originally proposed by [46, 54]. On the
determination of the most suitable location and horizontal
alignment from the F-AHP alternatives the theory of least
cost path (LCP) is used in a GIS platform. The schematic
framework of the modified F-AHP approach in this study is
presented in Figure 3. In this study, decisionmakers (experts)
are the transportation engineers and planners.

A step-by-step summary of the F-AHP methodology is
presented in the following six stages.
Stage 1. Hierarchical organization of the attribute/indicator
characteristics to be analyzed for the bypass horizontal
alignment determination.

Stage 2. Standardizing attribute or indicator characteristics
using asymmetric and symmetric models.

Stage 3. Weighting factors. Weighting the model criteria
provides relative measures of the interaction and importance
of each attribute/indicator (factors).Theweights are obtained
through a pairwise comparison analysis in an AHP approach
in discussion with experts. The experts play an important
role in the iterative adjustment of weights to improve the
consistency ratio (CI).

Stage 4. Deriving theweightedmap layers of the criterion.The
weighted criterion layers are generated using the function:
WF
𝑘𝑛
= 𝑊
𝑖
×MF
𝑖
, where𝑊

𝑖
is the weight of the criteria factor

from the pairwise comparison and MF
𝑖
is the membership

function for the criteria.

Stage 5. Deriving the overall location suitability map layers.
The suitability is calculated by combining the weighted
criterion layers. This function sums the weighted fuzzy maps
of the different factors’ proprieties to obtain suitability maps
at the final level using the equation: 𝑅

𝑖
=WF

𝑘1
+WF
𝑘2
+ ⋅ ⋅ ⋅ +

WF
𝑘𝑛
, where 𝑅

𝑖
is the overall rating score for the suitability

of land and WF
𝑘𝑛

is the weighted value for the different
criterion.

Stage 6. Most suitable route location determination. The
overall suitability location map is obtained using the least
cost path (LCP) comparison and determination through GIS
analysis. At this stage, the constraint factor(s) are introduced.
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2.3.1. Development of DecisionHierarchical Structures. Devel-
oping the hierarchical decision model consists of the decom-
position of the “complex” decision problem into smaller
manageable elements of different hierarchical tree/layers.
An example four-level hierarchical tree is illustrated in
Figure 4 [33]. The first layer of the hierarchy corresponds to
the objective or goal, and the last layer corresponds to the
evaluation alternatives (options), whereas the intermediate

levels correspond to criteria and subcriteria being considered
in the project.

In Figure 4, the nomenclature adopted for each item in
the hierarchical model is 𝑋𝑘

𝑖,𝑗
, where 𝑖 is the order of the

child at the level/layer 𝑘 and 𝑗 is the parent of the child
[33]. For example, 𝑋2

1,1
shows the item is at level 𝑘 = 2, is

the first child 𝑖 = 1, and its parent is 𝑗 = 1. Each child,
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Figure 8: (a) Eldoret municipality boundary overlaid on the topographic map of the area. (b) Source and destination points on the current
A104 highway passing through the CBD.

in the intermediate levels, is criterion and subcriterion
that affect the corresponding parent and child, respectively.
The apostrophe on any intermediate item (element, factor,
subcriterion), 𝑋𝑘

󸀠

𝑖,𝑗
, indicates that the element does not have

dependent children. The shaded items correspond to levels 2
and 3, that is,𝑋2

3,1
,𝑋3
1,3
,𝑋3
2,3
, and𝑋3

3,3
.

2.3.2. Development of Fuzzy Judgment Matrix Using AHP
Pairwise Comparisons. The elements of a particular level are
compared pairwise with a specific element of an upper level
(Figure 4). A fuzzy judgment matrix (𝐽) is generated using
fuzzy pairwise comparison index (𝑗

𝑖𝑗
). A relative importance

(strength) of the pairwise comparison is assigned using a
scale of 1–9 (Table 2) [6, 7], which are fuzzified to capture
vagueness in perception and meaning as depicted in Table 3.
For 𝑛 number of comparison items, the fuzzy judgment
matrix 𝐽 is represented by

𝐽 =
[
[
[

[

𝑗
11
𝑗
12
⋅⋅ 𝑗
1𝑛

𝑗
21
𝑗
22
⋅⋅ 𝑗
2𝑛

⋅ ⋅ ⋅ ⋅

𝑗
𝑛1
𝑗
𝑛2
⋅⋅ 𝑗
𝑛𝑛

]
]
]

]

. (6)

For diagonal entries, that is, 𝑖 = 𝑗, 𝑗
𝑖𝑗
= 1. The upper right-

hand triangle entries 𝑗
𝑖𝑗
are comparison items that are defined

by the decision maker, whereas lower left-hand triangle
entries are derived by taking reciprocals; that is, 𝑗

𝑗𝑖
= 1/𝑗
𝑖𝑗
.

2.3.3. Calculation of Fuzzy Weights. Various techniques can
be used to compute the final fuzzy weights, such as com-
putation of the eigenvector, arithmetic mean, geometric
mean, and so forth. Preliminary investigation carried out
using these techniques showed no significant difference.
Consequently, for ease of implementation, the geometric
mean is adopted to estimate the weights. Fuzzy arithmetic
operations (Table 4) are utilized over matrix 𝐽 to compute
the fuzzy weights. Following the previous example for 𝐽, the
geometricmean is computed for each row 𝐽

𝑖
: given 𝐽 from (6),

the corresponding fuzzy weights are computed as

𝐽
𝑖
= (𝑗
𝑖1
⊗ ⋅ ⋅ ⋅ ⊗ 𝑗

𝑖𝑛
)
1/𝑛

𝑤
𝑖
= 𝐽
𝑖
⊗ (𝐽
1
⊕ ⋅ ⋅ ⋅ ⊕ 𝐽

𝑛
)
−1

,

(7)

where 𝑤
𝑖
is the fuzzy weight and 𝑖 = 1 to 𝑛.
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Figure 9: (a) DEM of the study area from 30m × 30m ASTER Global DEM. (b) Slope map of the study area derived from the DEM.

Table 4: Definition of fuzzy numbers and their scale as used for making pairwise comparisons.

Relative importance aFuzzy scale bDefinition Explanation
1̃ (1, 1, 1) Equal importance Two activities contribute equally to objective

3̃ (3 − Δ
𝑐

, 3, 3 + Δ) Weak importance Experience and judgment slightly favour one activity
over another

5̃ (5 − Δ, 5, 5 + Δ)
Essential or strong

importance
Experience and judgment strongly favor one activity

over another

7̃ (7 − Δ, 7, 7 + Δ) Demonstrated importance One activity is strongly favoured and demonstrated in
practice

9̃ (8, 9, 9) Extreme importance The evidence favouring one activity over another is of
highest possible order of affirmation

2̃, 4̃, 6̃, 8̃ (𝑥 − Δ, 𝑥, 𝑥 + Δ)
Intermediate values
between two adjacent

judgments
When compromise is needed

1/𝑥 (1/(𝑥 + Δ), 1/𝑥, 1/(𝑥 − Δ)

1/9̃ (1/9, 1/9, 1/8)

aThe intensity of importance definition is in accordance with the description proposed by [6, 7]; bminimum, most likely, and maximum values.
c
Δ is a fuzzification factor.
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Figure 10: Land-use and land-cover depicting (a) built-up urban and nonurban areas classified from Landsat ETM+ and (b) zoning map of
the Eldoret town municipality.

2.3.4. Establishment of Hierarchical Layer Sequencing: Weigh-
ing and Fuzzy AHP Scoring. The local priorities at each level
are aggregated to obtain final preferences of the alternative.
This computation can be carried out from the evaluation
alternatives (bottom level) to the top level (goal or objective)
or vice versa depending on the knowledge and expertise
of the decision makers and on the number of objectives
being considered. As depicted in Figure 4, each of the three
alternatives,𝐴

𝑖
, 𝑖 = 1, 2, 3, is aggregated through level 3, level

2, and finally to level 1 (goal).Therefore, following Figure 4 at
each level of 𝑘, the fuzzy global preference weights (𝐺

𝑘
) are

computed as

𝐺
𝑘
= 𝑤
𝑘
⋅ 𝐺
𝐾−1

𝐺
1
= 𝑤
1
; 𝐺

2
= 𝑤
1
⋅ 𝐺
1
;

𝐺
3
= 𝑤
3
⋅ 𝐺
2
; 𝐺

4
= 𝑤
4
⋅ 𝐺
3
.

(8)

The final fuzzy AHP score (𝐹
𝐴
𝑖

), for each alternative 𝐴
𝑖
, is

obtained by carrying out fuzzy arithmetic sum over each
global preference weights:

𝐹
𝐴
𝑖

=

𝑛

∑
𝑘−1

𝐺
𝑘
, (9)

for each study criteria or alternative (𝐴
𝑖
).

2.3.5. Ordering Result Alternatives Using Fuzzy Ranking
Method through Fuzzy Defuzzification. Fuzzy defuzzification
methods can be used for ranking fuzzy numbers. Defuzzi-
fication entails converting the final fuzzy AHP score 𝐹

𝐴
𝑖

into a crisp value. Once the final fuzzy AHP score (𝐹
𝐴
𝑖

)

of each alternative is defuzzified, the crisp numbers are
compared and ranked accordingly. Various techniques are
used for defuzzification; however, each technique extracts
different levels of information from the fuzzy numbers and
consequently may give different ranking orders [55]. This
implies that an alternative ranked the best may be ranked
differently upon changing the defuzzification technique, and
is commonly called rank reversal, which is a common con-
cern in AHP analysis [8]. This problem is further aggravated
with the fuzzy outputs and the use of different defuzzification
techniques. This induces a dilemma on the decision maker’s
part for the selection of an alternative [56]. This uncertainty
is taken through decision maker’s risk attitude analysis,
discussed in Section 2.3.6 below.

2.3.6. Incorporating Risk Attitude in Decision Making. The
final decision making based on fuzzy output of an alternative
(𝐴
𝑖
) induces undue burden on the decision maker since

there is an infinite solution space. The final ranking can
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Figure 11: Digitized and classified major road networks within the
study area.

be undertaken by incorporating the decision maker’s risk
tolerance (attitude) and confidence over the evaluation,
which is more subjective.The 𝛼-cut concept described earlier
represents the decision maker’s degree of confidence in the
fuzzy assessment (i.e., 𝛼 = 0 entails lack of confidence
over the fuzzy assessment and hence utilizes the full range
of uncertainty, whereas the higher value of 𝛼 represents a
more confident decision maker and reaches maximum when
the value approaches the “most likely” value). For any given
𝛼-cut on a TFN, the notation used is (𝑎𝛼, 𝑏, 𝑐𝛼). Further,
given the desired confidence over the data, the risk attitude
has a significant effect on the defuzzified value using the
decision maker’s risk attitude index, 𝜆RI [46]. In order to
avoid the contradiction of subjective judgments following
defuzzification, the consistency should be checked by already
discussed CI and CR above.

2.3.7. Defuzzification of the Fuzzy Weighting. To prioritize
the risk factors in decision making, the fuzzy weighting
needs to be compared and ranked. To facilitate the pairwise
comparison process and to avoid the complex and unreliable
process of comparing fuzzy weighing, the 𝛼-cut (𝐴 ⊗ 𝐵 =
(𝑎
1
𝑏
1
, 𝑎
2
𝑏
2
, 𝑎
3
𝑏
3
)) and risk index (𝜆) expressed as 𝐴/𝐵 =

(𝑎
1
/𝑏
3
, 𝑎
2
/𝑏
2
, 𝑎
3
/𝑏
1
) are used to defuzzificate the fuzzy weigh-

ing and get a crisp weighing of each risk factor; that is,

𝑤
𝛼

1
= 𝑤
1
+ 𝛼 (𝑤

2
− 𝑤
1
)

𝑤
𝛼

3
= 𝑤
3
− 𝛼 (𝑤

3
− 𝑤
2
) .

(10)

And finally,

𝑤 = 𝜆𝑤
𝛼

3
+ (1 − 𝜆)𝑤

𝛼

1
. (11)

2.4. F-AHP Implementation. Let 𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} and

𝑍 = {𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑚
} be an object and goal sets, respectively.

According to the extent analysis technique, for each objective
function, extent analysis is carried out with respect to each
goal set. Hence, 𝑚 extent analysis values for every object set
are given by

𝑀
1

𝑔𝑖
,𝑀
2

𝑔𝑖
, . . . ,𝑀

𝑚

𝑔𝑖
; 𝑖 = 1, 2, . . . , 𝑛, (12)

where𝑀𝑗
𝑔𝑖
(𝑗 = 1, 2, . . . , 𝑚) are the TFNs. The value of fuzzy

synthetic FS
𝑖
extent with respect to the 𝑖th object is defined

by

FS
𝑖
=

𝑚

∑
𝑗=1

𝑀
𝑗

𝑔𝑖
⊗ [

[

𝑛

∑
𝑖=1

𝑚

∑
𝑗=1

𝑀
𝑗

𝑔𝑖

]

]

−1

. (13)

For calculation of F-AHP priority vectors, fuzzy pairwise
comparison matrix 𝐴 = (𝑎

𝑖𝑗
)
𝑚∗𝑛

is considered, in which
𝑎
𝑖𝑗
= (𝑟
𝑖𝑗
, 𝑠
𝑖𝑗
, 𝑡
𝑖𝑗
), where 𝑟, 𝑠, and 𝑡 are defined as the lower,

modal, and upper values of the triangular fuzzy number (𝑀),
respectively. In this theTFNs (∑𝑚

𝑗=1
𝑀
𝑗

𝑔𝑖
) can be accomplished

by fuzzy addition operation for the 𝑚 extent analysis values
in such a way that

𝑚

∑
𝑗=1

𝑀
𝑗

𝑔𝑖
= (

𝑚

∑
𝑗=1

𝑟
𝑖𝑗

𝑚

∑
𝑗=1

𝑠
𝑖𝑗

𝑚

∑
𝑗=1

𝑡
𝑖𝑗
) ; 𝑖 = 1, 2, . . . , 𝑛,

[

[

𝑛

∑
𝑖=1

𝑚

∑
𝑗=1

𝑀
𝑗

𝑔𝑖

]

]

−1

= (
1

∑
𝑛

𝑖=1
∑
𝑚

𝑗=1
𝑡
𝑖𝑗

,
1

∑
𝑛

𝑖=1
∑
𝑚

𝑗=1
𝑠
𝑖𝑗

,
1

∑
𝑛

𝑖=1
∑
𝑚

𝑗=1
𝑟
𝑖𝑗

) .

(14)

Subsequently, the degree of possibility of𝑀
2
= (𝑟
2
, 𝑠
2
, 𝑡
2
) ≥

𝑀
1
= (𝑟
1
, 𝑠
1
, 𝑡
1
) can be expressed as

𝑉 (𝑀
2
≥ 𝑀
1
) = sup
𝑥≥𝑦

[min (𝜇
𝑀1
(𝑥) , 𝜇

𝑀2
(𝑦))]

𝑉 (𝑀
2
≥ 𝑀
1
) = ℎ𝑔𝑡 (𝑀

1
∩𝑀
2
) = 𝜇
𝑀2
(𝑑)

=

{{{

{{{

{

1, if 𝑠
2
≥ 𝑠
1

0, if 𝑟
1
≥ 𝑡
2

𝑟
1
≥ 𝑡
1

(𝑠
2
≥ 𝑡
2
) − (𝑠
1
≥ 𝑟
1
)
, otherwise,

(15)

where 𝑑 is the ordinate of the highest intersection point of the
triangular fuzzy network between 𝜇

𝑀1
and 𝜇

𝑀2
as demon-

strated in Figure 5. Furthermore, an extent of possibility for
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Figure 12: (a) Geological structure of the study area described by aphanitic and porphyritic structures. (b) Types and distribution of soil
cover within the study area.

a convex fuzzy number to be larger than 𝑘 convex fuzzy
number𝑀

𝑖
for 𝑖 = 1, 2, . . . , 𝑘 can be calculated according to

𝑉 (𝑀 ≥ 𝑀
1
,𝑀
2
, . . . ,𝑀

𝑘
)

= 𝑉 (𝑀 ≥ 𝑀
1
) , (𝑀 ≥ 𝑀

2
) , . . . , (𝑀 ≥ 𝑀

𝑘
)

= min𝑉 (𝑀 ≥ 𝑀
𝑖
) for (𝑖 = 1, 2, . . . , 𝑘) .

(16)

Assume that

𝑑
󸀠

(𝐴
𝑖
) = min𝑉 (FS

𝑖
≥ FS
𝑘
)

for (𝑘 = 1, 2, . . . , 𝑛) , 𝑘 ̸= 1,
(17)

then the value of weight vector (𝑊󸀠) for 𝐻
𝑖
= 1, 2, . . . , 𝑛, for

𝑛 number of elements, can be expressed as

𝑊
󸀠

= (𝑑
󸀠

(𝐻
1
) , 𝑑
󸀠

(𝐻
2
) , . . . , 𝑑

󸀠

(𝐻
𝑛
))
𝑇

. (18)

After normalization of (18), a nonfuzzy number (𝑊) is
represented as given below:

𝑊 = (𝑑 (𝐻
1
) , 𝑑 (𝐻

2
) , . . . , 𝑑 (𝐻

𝑛
))
𝑇

. (19)

The F-AHP implementation with extent analysis can sum-
marily be represented by the following steps. These steps are
illustrated in Figure 6, where𝑊

𝑖
is the criteria weight.

Step 1. Acquisition of normal (crisp) pairwise comparison
matrices (PCM).

Step 2. Fuzzifying the crisp PCM to fuzzy PCM.

Step 3. Calculation of performance ratings using fuzzy extent
analysis.

Step 4. Weightage multiplication from hierarchy.

Step 5. Embedding uncertainty of decision maker (confi-
dence) through alpha-cut analysis.

Step 6. Embedding attitude of the decision maker through
lambda function.

Step 7. Normalizing the effect table.

Step 8. Positive and negative ideal similarity vector identifica-
tion.

Step 9. Similarity measurement using vector matching func-
tion.

Step 10. Final performance index measurement.
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Figure 13: Drainage networks showing the main rivers: Sosiani,
Kipkaren, and Nureri.

The selection of suitable highway bypass comprises of
consideration of several physical environmental and engi-
neering factors or criteria. In this study, the following seven
data factors were determined: elevation fromdigital elevation
model (DEM)-EL; slope computed from the DEM (SP);
land-use and land-cover (LU); existing major road networks
(RN); geology (GL); soils types (SW); and stream or drainage
networks (DN). These criteria are supposed to take care
of topography, environmental, physical, and socioeconomic
factors (Figure 7).

In Figure 7, a three-level hierarchical tree structure is
adopted to take care of the two objectives or dimensions:
physical and socioeconomic considerations. A weightless
constraint factor was introduced in the criteria hierarchy to
ensure that the proposed bypass does not pass through the
central business district (CBD) of Eldoret town, from which
the traffic congestion is to be eased, and is not far away
from the municipal boundaries or extents. Another salient
constraint is the maximum length of the bypass that could be
financed. This factor was incorporated indirectly by defining
the extent of the study area.

3. Case Study and Data Sources

3.1. Case Study Problem. The rapid population and eco-
nomic growth in Eldoret town municipality (Figure 8(a))
have resulted in continuous traffic congestion in the central

business district (CBD). This situation is aggregated by the
fact that the town serves as a modal point for the transit
of heavy goods to Uganda and the neighboring countries
from the port of Mombasa. To ease the traffic congestion, the
Kenya National Highways Authority (KeNHA) has decided
to construct a 45m multilane international trunk (class A)
bypass. One of problems with the proposed project is that
there is no reserved highway bypass corridor. Thus KeNHA
has to come up with an optimal route and compensate land
owners whose properties lie in the proposed route.

Figure 8(a) shows the extent of the Eldoret municipality
overlaid on the topographic map of the area. Figure 8(b)
shows the current A104 highway and the proposed modal
points of the new bypass, with origin being at Royalton (A)
and destination at Maili-Nne (C). Point B (Cheptiret) is used
in this study to validate the reliability of the determined
optimal bypass by assuming the bypass starts from B and is
constrained to pass through A and C.

3.2. Data Sources: Evaluation Criteria. This section presents
the datasets (criteria) (Figure 7), as used in the determination
of the location of the proposed highway bypass.

3.2.1. Digital Elevation Model (DEM) and Slope. While dis-
tance is the most fundamental cost of moving through a
space, humans select routes based onmore than just distance.
A related contributing criterion to distance is the slope of
the surface, since flatter terrain allows for more direct, faster,
and easier travel. A raw numerical value of the slope clearly
cannot be equated with the cost of overcoming that slope
since many different quantifying schemes exist. It may seem
reasonable to say that the cost of overcoming a zero degree
slope is zero; thus the slopes should be as minimum possible.
Also, downhill speeds, while relatively faster at shallow slopes
than their uphill equivalents, are relatively slower at higher
slopes. Moving downhill on steep slopes is more dangerous
than uphill travel, requiresmore caution, and typically results
in faster speeds.

Terrain elevation data should be represented as continu-
ous phenomena rather than discrete objects in order to fully
model the land surface. Digital elevation model (DEM) is a
digital representation of the continuous elevation variation
of the land surface. Elevation data plays an important role
in determining which areas may be suitable according to
the technical requirements in optimum route design. For the
study area, ASTER Global DEM at 30m spatial resolution
was used (Figure 9(a)). The corresponding slope map is
represented in Figure 9(b). From Figure 9, it is observed
that the elevation varied from a minimum of 1 989m to a
maximum of 2 229m, and the corresponding slope ranges
from 0∘ to 38∘.

3.2.2. Land-Use and Land-Cover. Information on land-use
and land-cover data is necessary in specifying the impacts
of the suggested highway on the surrounding environment,
where the highway will pass, and also in determining the
degree of compensation for any acquired land. For this
study, the land-use and land-cover, respectively, comprised of
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Figure 14: Standardized linear fuzzy maps for (a) elevation and (b) slope for the study area.

the built-up (urban) and nonurban areas, and were derived
through unsupervised classification of Landsat 8 ETM+ data
with results in Figure 10(a).

The built-up area was segmented using the municipality
zone map (Figure 10(b)). The zone map comprised of 7 poly-
gons of land-use as educational and recreational, commercial,
administration and public utilities, agricultural, industrial,
residential, and transport zones. In the implementation, the
zoning map (except for the agricultural areas) is treated
as highly restricted area for the bypass route and thus is
expressed as “no-data” map.

By applying Boolean logic, the study area is constrained
into two classes of suitable (value 1) and unsuitable (value 0).
Themathematical formulation in area selection by using con-
straint criteria is expressed as SI = ∏𝐾

𝑗=1
𝑏
𝑗
, where SI = total

suitability index value (0 or 1); 𝑏
𝑗
= suitability index value for

each constraint criterion (0 or 1); and 𝐾 = total number of
constraint criteria [57].

3.2.3. Existing Major Road Network. Existing road network
is an important evaluation factor since the distances to the
existing major roads depict the connections to and from

the proposed bypass. The bypass should not cross or pass
too near the existing major roads in order to minimize
the construction of roundabouts and other related road
furniture. Figure 11 shows the digitized and classified major
road networks within the study area. The bypass should
originate from and reconnect to the current A104 highway.

3.2.4. Geological Structure and Soils Types. The geological
structure influences the type and property of soils within
a given area and thus influences the flexible pavement
foundation. The project area is characterized by two main
geological formations: aphanitic and porphyritic geological
structures (Figure 12(a)). Figure 12(b) shows the distribution
and types of soils as loamy, clayey, and loamy clayey, with the
latter two dominating the study scene.

3.2.5. Drainage Networks. Drainage networks depict the
distribution of major rivers within the study area. This is an
essential cost-factor as it influences the cost of constructing
bridges. By determining the hydrologic flow accumulation
from the DEM, the three main drainage networks (rivers)
within the study area were derived (Figure 13).Minor streams
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Figure 15: (a) Euclidian distances to roads map and (b) corresponding standardized fuzzy membership.

and drainage channels were ignored since culverts can be
erected instead of bridges.

3.3. Conditions for Highway Bypass Horizontal Alignment
Location. Theroute cost can be analyzed under twomain cost
headlines: expropriation and construction costs. Highway
bypass route determination should be located and designed
with consideration of optimum time, cost, and productivity,
whereby optimum cost is the most significant factor. The
factors which affect the route’s construction cost are geology,
soil, topography, land-use, and existing road network infor-
mation.The factors that cause high or low expropriation cost
by affecting the real estate value are topography and land-use.

To locate the optimal horizontal alignment of the pro-
posed bypass, the following data conditions were considered.

(i) The selected route should be the least cost alternative.
To achieve this, the following factors were further
taken into consideration.

(ii) The elevation variations through the route should
be kept as minimum as possible. The elevations for
the study area ranged from 1 999m to 2 229m
(Figure 9(a)). For the desired bypass length of less

than 20 km, elevations of between 2 005m and
2 208m were recommended as suitable.

(iii) The slopes should also be kept as minimum as
possible, with suitable slope being between 0∘ and 25∘.
The slope for the study area had a maximum of 38∘;
thus slopes of up to 25∘ were considered suitable.

(iv) The highway bypass route should not pass near
existingmajor roads for the purposes of decongesting
the CBD. A buffer distance of up to 1 343m was
chosen from the center of the CBD to cater for this
condition.

(v) The route should not pass within urban built-up
areas in order to reduce the property damage and
compensation costs.

(vi) The route should not pass over streams and rivers
to avoid construction of bridges and possible road
destructions caused by overflows in event of flooding.
A buffer distance of 183m from the delineated major
rivers was chosen for this study case.

(vii) The geology and soil underlying the route should be
suitable for flexible pavement foundation stability.
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Figure 16: (a) Distance to drainage networks and (b) corresponding linear membership map for the drainage networks.

4. Results, Analysis, and Discussions

This section presents the case study results, analyses, and
discussions in the following steps in the preparation of the
study datasets (factors).

(i) Rasterization and reclassification of the criteria layers
according to the evaluation options and fuzzy mem-
bership in order to create standardized and weighted
attributes.

(ii) Creation of thematic cost surface maps from the
standardized and weighted hierarchical attributes.

(iii) Generation of accumulated cost surface distances and
backlink datasets as suitability map layers.

(iv) Determining the F-AHP least cost bypass using the
cost distance and backlink information in a GIS
optimal path finding system.

Rasterization is carried out to create raster data models,
which are more suitable in the analysis of movements from
cell-to-cell, rather than through an infinite directional space
as in vector datamodels. As part of standardization, the raster
datasets were resampled to 30m × 30m spatial resolution.

4.1. Rasterization and Reclassification of Decision Criteria.
The rasterized datasets were classified into Euclidean dis-
tances to create the distance maps, which were reclassified
into uniform data, based on the highway alignment con-
ditions as set out in Section 3.3. The reclassified uniform
data are converted to cost surface maps. For the point and
linear-based criteria, linear cost-surfaces are generated, and
for the polygonal-based features, free function cost-surface
maps are created. The results are directed graph models for
the movements through space in the evaluation factors, with
standardization ranging from aminimumof 0 to amaximum
of 1.

4.1.1. Linear Map for Elevation. For the elevation data, a
negative elevation function was adopted where elevation of
2208m was assigned a value one (1), while the least elevation
of 2005m a value zero. The reclassified elevation map is
shown in Figure 14(a). The reclassified linear elevation map
shows that most parts were suitably elevated for locating the
bypass.

Similarly for the slope map, slope of 0∘ was assigned a
value one (1) which is most desirable and slope of 25∘ a
value zero which is least desirable. The slope linear map in



www.manaraa.com

18 Advances in Civil Engineering

0 1 2 4 6 8

(km)

N
E

S

W

35.192285 35237100 35281915 35326730 35371545

35.192285 35237100 35281915 35326730 35371545

0545886

0497279

0448883

0400047

0361431

0545886

0497279

0448883

0400047

0361431

Fuzzy geology map

0.5

0.5–0.699999988

Membership

(a)

0 1 2 4 6 8

(km)

N
E

S

W

35.192285 35237100 35281915 35326730 35371545

35.192285 35237100 35281915 35326730 35371545

0545886

0497279

0448883

0400047

0545886

0497279

0448883

0400047

Fuzzy soil map

0.100000002

0.100000002–0.498431361
0.498431361–0.899999976

Membership

(b)

Figure 17: Free function maps for (a) geological structure and (b) soil types within the study area.

Figure 14(b) also indicates that most of the area is suitable for
route location, as evidenced by the fuzzy membership values
ranging between 0.75 and 1.

4.1.2. Road Networks: Euclidean Distance and Linear Maps.
The distance to road map was reclassified using the fuzzy lin-
ear function, where distances close to the roads were assigned
a value zero and those farthest away a value 1. Figure 15(a)
shows the road Euclidean distances, and Figure 15(b) repre-
sents the fuzzy memberships for the distances.

4.1.3. Drainage Networks: Distance and Linear Maps.
Through fuzzy reclassification, a positive drainage function
was adopted where a distance of 183m was assigned a value
one (1), while lesser distances were assigned a value of zero
(Figure 16). The results depict the fact that distances farthest
from the main rivers were considered as the most suitable
for locating the proposed bypass.

4.1.4. Free Functions for Geology and Soils. A value of 0.7
was assigned to the upper phonolite rock type and 0.5 to
the lower phonolite rock classes, with the free function-based
geologic reclassification results shown in Figure 17(a). These
results imply that most of the area’s geological structure is

stable enough for the construction of the proposed flexible
pavement.

For the soils reclassification, a value of 0.9 was assigned
to the loamy soil, 0.5 to loamy clay, and 0.1 to clayey soil. The
soil reclassification results are presented in Figure 17(b). The
results imply that most of the soil was fairly suitable for road
bypass location as evidenced by the fuzzy value of above 0.5,
with some sections requiring stabilization, that is, those that
have fuzzy values of 0.1 (clay soils).

4.1.5. Free Function for Land-Use. In the free function reclas-
sification of land-use, a value of 0.8 was assigned to nonurban
areas and 0.1 to built-up areas resulting in Figure 18. As noted
earlier, the zoning map is used to delineate the municipality
boundary and to act as a no-data constraint criteria.

4.2. Weighting of Decision Factors. Following the decision
judgment matrix, the CI is computed. The maximum eigen-
value evaluated was determined as (𝜆max = 3.086). Thus, for
a hierarchical level of 𝑛 = 3, the CI from (3) was deter-mined
as (CI = 0.043), and the corresponding random index (RI)
is obtained as 0.52. Finally, the consistency ratio (CR) is
determined as equal to 8%, which is below the 10% threshold
and hence the judgment matrix is acceptable. Using the
geometric mean, as proposed for this study, the fuzzy weights
are computed.



www.manaraa.com

Advances in Civil Engineering 19

Membership

Fuzzy land-use map

Built-up areas
Nonurban area

0 1 2 4 6 8

(km)

N
E

S

W

35.192285 35237100 35281915 35326730 35371545

35.192285 35237100 35281915 35326730 35371545

0545886

0497279

0448883

0400047

0361431

0545886

0497279

0448883

0400047

0361431

Figure 18: Free function for land-use in the study area.

First the pairwise comparison matrix is generated for the
equally contributing physical subcriteria and socioeconomic
subcriteria, as determined by the decision experts. For the
case study, the two objectives (Figure 7) were interrelated
and equally contributed in weight to the cost of locating
the bypass. After subcriteria (factors) accounting in each of
the two objective groups, the final weight is computed via
multiplying obtained subcriteria weight by the related criteria
weight in the upper level as discussed in the methodology.
The results of the fuzzy weight determinations are presented
in Table 5.

From the results in Table 5, the socioeconomic criteria
(land-use and road networks) had the highest significance
among the decision making factors and are therefore consid-
ered to be the most costly in evaluating the viability of the
project.

4.3. Generation of the Cost Surface Maps. Once a directed
graph model for the movement through space is constructed
(Section 4.1), the cost of movement through the surface is
then determined according to the weights (Section 4.2). The
costs are a representation of the combination of the factors
that affect travel across a surface.

Through fuzzy overlay, the suitability of the area or cell
to travel through, or how much it costs to travel through a
cell, is determined. For the point and linear criteria, the fuzzy

algebraic sum (𝜇Combination = 1 − ∏
𝑛

𝑖=1
(1 − 𝜇

𝑖
)) is used to

combine the linear themes, with the results in Figure 19(a).
As depicted in Table 1, the fuzzy gamma is an algebraic

product of fuzzy product (𝜇Combination = ∏
𝑛

𝑖=1
𝜇
𝑖
) and fuzzy

sum operation, such that fuzzy gamma is computed as
𝜇Combination = (Fuzzy Sum)

𝛿

∗ (Fuzzy Product)1−𝛿, where 𝜇
𝑖

denotes the fuzzy weight of the 𝑖th factor, 𝜇Combination is the
unit value in the output map, and the value of fuzzy gamma
is determined between a min of 0 and max of 1. The correct
value of fuzzy gamma generates an output map showing
adoption between decreasing and increasing trend in the sum
and product fuzzy operations.

The criteria fuzzy sum map results show that most of the
area is suitable for bypass location, as evidenced by fuzzy
membership values ranging from 0.8 to 1. In combination
with the free function datasets, fuzzy gamma (fuzzy 𝛾) results
with an optimal value of 0.7 were overlaid with the sum
map from the algebraic sum and the categorical data of soil,
geology, and land-use to create the composite gamma cost-
map (Figure 19(b)). The result in Figure 19(b) also shows that
most of the area within the study area is suitable in locating
the bypass, that is, fuzzy membership values ranging from
0.65 to 0.85.

To impose the constraint factor (“no-data” map) on the
composite fuzzy gamma results, the fuzzy algebraic product
is used to obtain the ultimate cost surface map. The fuzzy
product ensures that the CBD area has no-data value so that
in the LCPmodelling, the highway does not pass through the
CBD. The result of the final cost surface map is presented
in Figure 20, with the CBD areas having the least or zero
fuzzy membership for the bypass location. The cost surface
map shows the region has different surface friction levels
(expressed in fuzzy numbers), from which the most optimal
or least cost route can be extracted.

4.4. Accumulated Cost Surface Distance and Least Cost Path
Analysis. Finding aminimumpath over a surface partitioned
into regions of different frictions to movement has two
aspects: (i) creation of an accumulated cost surface from a
cost surface (where the frictions are stored); and (ii) tracing a
minimum cost on the accumulated cost surface from a source
point to a destination.

A cumulative cost surface creates a new surface by assign-
ing each cell a number that indicates the general least cost
direction to the destination (ending) point. This direction
surface is used to draw the LCP from the source node to
the destination node. There are three main network problem
models that are related to the ways that weights or resistances
are assigned to each of the network links, namely, isotropic,
partially anisotropic, and fully anisotropic [58].

In the full anisotropic network model, costs of passage
are really anisotropic, as depicted in Figure 21. The cost of
passage depends on location and direction, but there is one
prevailing direction for the whole surface (e.g., it is easier to
go left and up). In this type of problem, costs are variable
over the surface and are direction dependent; however, the
direction dependency is not in prevailing direction and is also
variable over the surface [59].
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Figure 19: (a) Sum map of the linear functions for roads, streams, slopes, and elevation. (b) Fuzzy gamma map of the sum map of the linear
functions and the free functions for land-use, soil, and geology maps.

Table 5: Final fuzzy weights (eigenvalues) corresponding to physical and socioeconomic subcriteria in the factor evaluation phase.

Criterion Physical criteria Socioeconomic criteria
Criterion weight 0.500 0.500
Subcriterion Elevation (EL) Slope (SL) Soil (SW) Geology (GL) Drainage network (DN) Land-use (LU) Road networks (RN)
Subcriterion weight 0.184 0.275 0.226 0.173 0.197 0.491 0.454
Final weight 0.092 0.1375 0.113 0.865 0.0985 0.2455 0.227

Since the direction of travel for each cell is not defined at
the beginning of the best route finding process, the cost-of-
passage surface is also not defined, and the traditional cost-
path finding procedure cannot be applied to solve problems
with direction dependent costs. The necessary costs to find
the best path are related to the direction dependent slope
through a predefined function.

In determining finding least cost path between two points
in the raster environment, the source (starting point) and cost
surface (created by gamma fuzzy overlay) are analyzed using
the full anisotropic model to find direction. Full anisotropic
model generates accumulative cost surface and direction
surface that assigns number to each cell showing the direction
of movement to calculate accumulated cost surface. By intro-
ducing the destination point (ending point), accumulative
cost surface and direction surface to path finding algorithm

are generated to find the least cost path between source point
and destination point.

While the output cost distance raster identifies the accu-
mulative cost for each cell to return to the closest source
location, it does not show which source cell to return to or
how to get there. The cost backlink computation returns a
direction raster as output, providing what is essentially a road
map that identifies the route to take from any cell, along
the least-cost path, back to the nearest source. The fuzzy-
based backlink raster(s) is shown in Figure 22 for the different
derived routes: (a) C-A (Maili-Nne to Royalton) and (b) C-
B (Maili-Nne to Cheptiret), respectively. The backlinks show
that outside the CBD, there exists a single exit point (E)
through which the optimal route must pass, defined by the
horizontal and vertically oriented friction lines.
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Figure 21: Full anisotropic least cost path determination model
(Moghaddam and Delavar [35]).

4.5. GIS-Least Cost Path Results and Analysis

4.5.1. Proposed Highway Bypass Horizontal Alignment. Using
the backlink raster, the full anisotropic-based LCP is used
to determine the actual alignment of the located route from
Figure 22.The results in Figures 23(a) and 23(b), respectively,
show the LCP from Maili-Nne to Royalton (C-A) and to

Cheptiret (C-B). The latter route (C-B) is used to validate the
alignment of the former route (C-A), that is, how well the
proposed algorithm performed.

The route result from the fuzzy AHP is compared with
that of AHP for the C-A route, with the results presented
in Figure 24. While the fuzzy AHP results avoided the CBD,
decisions based on AHP tended to encroach into the urban
residential zones. In terms of the length, both results gave
comparable results, with the AHP approach giving 16.51 km,
while the fuzzy AHP length of 16.48 km.

4.5.2. Proposed Route Longitudinal and Slope Profiles. The
plan and longitudinal profile characterizes the route of the
bypass.Theplan of the route is its projection on the horizontal
plane that consists of straight lines connectedwith curvilinear
paths. The longitudinal profile represents the analysis of the
route on a vertical plane with intersections in different places.
A longitudinal profile is helpful for the analysis and the
subsequent comparison of several variants of the bypass and
for successive improvements of highway design decisions.
The elevation-length profile graphs are presented in Figure 25
for the AHP and fuzzy AHP methods. Further, a plot of the
possible formation level (dotted line) shows that there will
be more earthwork fill in the AHP route (Figure 25(a)) than
in the fuzzy AHP result (Figure 25(b)) where volume of cut
seems to balance the fill.

Figures 26(a) and 26(b), respectively, show the slope-
length profiles for AHP and fuzzy AHP results. The results
shows that the fuzzy AHP located the bypass on relatively
lower slopes as compared to the AHP-based prioritization
approach.

4.6. Discussions. The growing need for highway planners
and designers to recognize the importance of sustainable
development within civil engineering has been identified
from a regulatory standpoint [60]. Environmental and engi-
neering indicators are increasingly being used to assess the
sustainability of transport and to facilitate decision making.
However, potential users are faced with a wealth of indicator
sets and varied expert opinions, differing greatly in their
technical/scientific basis and applicability in practice. This
implies the need to develop approaches to help decision
makers choose and analyze suitable indicator sets for optimal
solutions [20, 61].

As demonstrated in this study, transportation planning
is a wide human-oriented field with diverse and challenging
problemswaiting to be solved.Most of the transport decisions
take place under imprecision, uncertainty, and partial truth.
Some objectives and constraints are often difficult to be
measured by crisp values. In this study, traditional analytical
techniques were found to be noneffective when dealing with
problems in which the dependencies between variables are
too complex or ill-defined with respect to ambiguities and
uncertainties.

On the contrary to the observations in this study, Saaty,
the developer of the AHP, is however against fuzzification
as discussed in Saaty and Tran [19]. Saaty believes the AHP
by pairwise comparison matrix is already fuzzy because
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Figure 22: Backlink rasters from C (Maili-Nne) to (a) A (Royalton) and (b) B (Cheptiret), showing the constraint factor (Eldoret CBD), with
the exit point E.

some uncertainty lies in the nature of the method, thus
making the AHP fuzzier not only does not guarantee better
results but also could make it worse [19]. However, these
assertions have been more on the theoretical arguments
than on practical comparative studies between AHP and
fuzzy AHP involving physical data. The argument in this
study is that spatial analysis involving AHP is subject to
human subjectivity, which introduces geospatially ontologic
and epistemic vague type uncertainty. This necessitates the
use of decisionmaking under uncertainty and for thatmatter,
fuzzification is desirable.

Results show that applying fuzzy AHP in multicriteria
decision analysis is suitable in determining new route loca-
tions. For example, from the results in Figure 24, the fuzzy
AHP bypass route avoided the built-up urban, as compared
to the AHP bypass that went through part of the developed
urban area. The reason for this drawback in AHP results
could be attributed to the fact that AHP only considers the
input criteria in a pairwise discrete manner and does take
into account the subjective and noncrisp nature of decision
making processes. F-AHP is thus seen as more flexible in
considering and integrating decision criteria.

Testing and validation of the model are limited to the
experiences of the domain experts, and the values for pair-
wise comparisons in fuzzy AHP depend on the knowledge
of the decision makers. The scores stating the relationship
among criterions were obtained in an interview with experts.
This means that the effectiveness of the result depends on

the opinion of experts. In order to improve the result, a larger
number of experts can be interviewed. In making the final
decision, field validation of the proposed bypass location is
recommended in addition to geopolitical considerations.

5. Conclusions

This study presents the combination of GIS, AHP, and fuzzy
logic as multicriteria evaluation techniques in identifying
optimal bypass location in Eldoret town in Kenya.The results
showed that the physical objectives and socioeconomic objec-
tives contributed the same weight of 0.5 at the onset, towards
the bypass location prioritization process. At the subcriteria
evaluation level, land-use/land-cover and the existing road
networks contributed the highest weight accounting for
47.3% amongst the seven decision factors. Only 52.7% of the
prioritization weights were finally contributed from the five
socioeconomic factors.

It has been observed from the literature that decision
makers face the uncertainties from subjective perceptions
and experiences in the decision making process. By using
fuzzy AHP, uncertainty and vagueness can be effectively
handled and a more effective decision reached. In this paper,
the multicriteria decision making model has been developed
and presented in a fuzzy environment for prioritization
of highway bypass location. Fuzzy approach capable of
capturing vagueness associated with subjective perception
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Figure 25: Elevation-length profile for (a) route C-A (Maili- Nne to Royalton) based on AHP and (b) route C-A (Maili-Nne to Royalton)
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Figure 26: Slope-length profile for the Maili-Nne to Royalton bypass based on (a) AHP and (b) fuzzy AHP methods.

of decision makers has been applied. The model is useful
in solving the practical problems, because vagueness and
imprecision can be effectively handled in this model. If the
criteria and alternatives are clearly defined, the presentmodel
can be adopted for use in the linear engineering structures
industry as a decision tool for optimal location.

The study recommends further studies on the determi-
nation of impacts of varied and additional physical, socioe-
conomic, and political parameters on bypass route location
using the proposed fuzzy AHP approach.
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